Antkeeper  0.0.1
hyperplane.hpp
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2023 Christopher J. Howard
3  *
4  * This file is part of Antkeeper source code.
5  *
6  * Antkeeper source code is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * Antkeeper source code is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ANTKEEPER_GEOM_PRIMITIVES_HYPERPLANE_HPP
21 #define ANTKEEPER_GEOM_PRIMITIVES_HYPERPLANE_HPP
22 
23 #include <engine/math/vector.hpp>
24 
25 namespace geom {
26 namespace primitives {
27 
34 template <class T, std::size_t N>
35 struct hyperplane
36 {
39 
42 
45 
47  constexpr hyperplane() noexcept = default;
48 
55  inline constexpr hyperplane(const vector_type& normal, float constant) noexcept:
56  normal{normal},
58  {}
59 
66  inline constexpr hyperplane(const vector_type& normal, const vector_type& offset) noexcept:
67  normal{normal},
69  {}
70 
78  [[nodiscard]] inline constexpr T distance(const vector_type& point) const noexcept
79  {
80  return math::dot(normal, point) + constant;
81  }
82 };
83 
84 } // namespace primitives
85 
86 using namespace primitives;
87 
88 } // namespace geom
89 
90 #endif // ANTKEEPER_GEOM_PRIMITIVES_HYPERPLANE_HPP
Geometric algorithms.
constexpr T dot(const quaternion< T > &a, const quaternion< T > &b) noexcept
Calculates the dot product of two quaternions.
Definition: quaternion.hpp:572
T offset(T longitude)
Calculates the UTC offset at a given longitude.
Definition: utc.hpp:38
n-dimensional plane.
Definition: hyperplane.hpp:36
constexpr hyperplane() noexcept=default
Constructs a hyperplane.
T constant
Hyperplane constant.
Definition: hyperplane.hpp:44
constexpr T distance(const vector_type &point) const noexcept
Calculates the signed distance from the hyperplane to a point.
Definition: hyperplane.hpp:78
constexpr hyperplane(const vector_type &normal, const vector_type &offset) noexcept
Constructs a hyperplane given a normal and an offset point.
Definition: hyperplane.hpp:66
vector_type normal
Hyperplane normal.
Definition: hyperplane.hpp:41
n-dimensional vector.
Definition: vector.hpp:44